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ABSTRACT 

Relationships are derived between the sample size permitting the elution of the 
components of a binary mixture as two touching bands and the parameters character- 
izing the separation and the column performance. These equations take into account 
the competitive interactions of the mixture components. They permit the determina- 
tion of the optimum experimental conditions for maximum production rate with 
touching band elution. 

The production rate increases monotonically with increasing inlet pressure 
available, provided that the column of optimum characteristics is used. For a given 
column, there is an optimum flow velocity and hence an optimum inlet pressure. 
Because of the competition between the mixture components for interaction with the 
stationary phase, the production rate under touching band conditions can be larger 
(under conditions of a predominant displacement effect) or lower (under conditions 
of a predominant tag-along effect) than the value derived when this competition is 
ignored. 

INTRODUCTION 

The optimization of experimental conditions for preparative chromatography 
is an important subject which has been actively studied in the recent years’. 
Experimentalists have tried to generalize their observations’-‘. Various theoretical 
approaches have been used to derive either qualitative rules6-‘0 or quantitative 
procedures for the calculation of optimum values of the parameters of a chromato- 
graphic separation 6-*,10 Considerable confusion and some level of controversy are . 
still understandably observed in an area where even the objectives are not always 
clarified. Depending on the type of work conducted, very different strategies are 

l1 possible . The preparation of small amounts of purified material needed for further 
investigations of its properties cannot be carried out following the same methods and 
principles as the industrial production of large amounts of pure compounds to be sold 
as drugs or fine chemicals. The time spent in developing and optimizing the separation 
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is a major cost in the former instance and must itself be minimized. More subtle 
problems are still poorly understood. The optimum conditions for maximum 
production rate are very different for the first and the second component of a pair of 
components, especially if their relative concentration is far from unitylo. Finally, 
specific requirements regarding the recovery yield and the fraction purity may affect 
considerably the outcome of the optimization process. 

We have discussed recently the optimization of the experimental conditions for 
the purification of the second component of a binary mixture’.‘. We took into account 
the competition between the two components for interaction with the stationary phase 
and the finite column efftciency. We also allowed slight band overlap by considering 
the cases when the required purity of the prepared product can be 99% or lower and 
accepting low recovery yields (e.g., 60%). We showed that a considerable increase in 
the production rate is permitted by the use of high-performance columns at high 
reduced flow velocities8~‘0~‘2. 

Nevertheless, there is still great interest among practitioners in the “touching 
bands” case6. This permits the achievement of a recovery yield close to 100% and at 
the same time the production of nearly 100% pure compounds. The determination of 
the cutting time is straightforward and all the information required for the operation 
of the chromatograph is available from the detector signal. No separate on-line 
analysis of the eluate is necessary for the proper operation of the instrument. The 
influence of minor fluctuations in column temperature, sample size, mobile phase 
velocity and possibly composition has little consequence on the degree of band 
interference, so the control of the chromatograph is much simpler. 

Knox and Pyper6 discussed the optimization of the experimental parameters in 
the touching band case. They made two restrictive assumptions: first they assumed 
that both band profiles are right triangles and second they neglected the competition 
between the two components and assumed that their elution is independent of each 
other. These assumptions are necessary for a simple, general solution of the problem. 
The extent to which they affect the end result has never been investigated. Recently, 
Snyder and Cox13 reformulated the equations derived by Knox and Pyper6, 
multiplying the number of, non-independent equations and obfuscating the issue 
without contributing to the solution. 

The purpose of this paper is the investigation of the solution of the optimization 
problem in the case of touching bands for components having a Langmuir competitive 
isotherm and a separate assessment of the errors introduced by the two assumptions 
made by Knox and Pyper6. The problem is investigated first with the ideal model, for 
which an exact solution can be derived under close formr4. Then corrections are 
introduced into the ideal model solution to account for the effect of the finite column 
efficiency, as was done in previous paper&*. 

This paper is not intended to be a critique of the landmark paper by Knox and 
Pyper6, but rather an extension of it. Within the limits of the assumptions they made, 
their results were correct and they provided an excellent first-order approximation. 
They were aware that neglecting the competitive interactions between the mixture 
components could not provide a better result6. Similarly_ this paper attempts to take 
competitive interactions into account, but for the lack of a better model uses the 
Langmuir competitive isotherms. This isotherm model itself is only a first approxima- 
tion, convenient for simulations, but which fits accurately the equilibrium data of few 
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systems . I5316 Accordingly, our results provide a second-order approximation, not 
exact values of the optimum experimental conditions. The accuracy of our predictions 
depends on the degree of agreement between the experimental isotherms and the 
competitive Langmuir model. 

THEORY 

Touching bands with the ideal model 

The ideal model of chromatography neglects the axial dispersion and assumes 
that the mass transfers between phases are infinitely fast, i.e., it assumes that the 
column efficiency is infinite, whatever the mobile phase velocity. Hence the only 
parameter to optimize is the loading factor, which is independent of the column length. 
In this section, we first derive the close-form equations giving the loading factor for 
which touching bands is achieved, in three successive cases: (i) in the general case, (ii) 
when competition between the two components is ignored and (iii) when competition 
is ignored and the elution profiles are right triangles. 

The fundamental equations 
We derive the equation giving the loading factor for touching bands in the 

general case, then introduce the simplifications brought by the assumptions made by 
Knox and Pyper6. 

In the general case. We assume for the sake of simplicity that the equilibrium of 
the two components in the chromatographic system used is correctly described by 
binary Langmuir isotherms: 

aiCi 

qi = 1 + blCl + bzC2 
(1) 

where qi is the amount of compound i adsorbed at equilibrium with a mobile phase 
where the concentrations of the components 1 and 2 are Ci and CZ, respectively. ai and 
bi are numerical coefficients characteristic of the compounds and the chromatographic 
system which can be derived from the pure compound isotherms. 

We have shown previously i4 that the loading factor, L,,,, for the second 
component (i.e., the ratio of the amount of second component in the sample injected to 
the column saturation capacity for this compound) which corresponds to exact 
separation of the two component bands, i.e., to touching bands, is given by the 
following equation: 

(2) 

where u is the relative retention of the two compounds (a = a2/a1 = K0,2/~0,1) and rl 
is the positive root of the characteristic equation of the problem (ref. 8, eqn. H-3). In 
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practice, rl almost always is nearly equal to CO,JC 0,2, the ratio of the concentrations 
of the two components in the feed, so the loading factor for touching bands is given by 

where qs,i = ai/bi, is the specific column saturation capacity. Solving eqn. 3a for L,, 
gives 

a-l * ( > L.f*l 
L&r,* = -y - c( (3’4 

where Lf,l is the loading factor for the first component. Depending on the relative 
concentration of the two components (i.e., C,,,/C,,,), the loading factor for the second 
component corresponding to touching bands in the ideal model decreases from 
[(LY - 1)/a]* (when Co,, is close to 0) to 0 (when C ,,* is close to 0). The corresponding 
values of the loading factor of the first component are 0 and (a - 1)*/a, respectively. 

When the competition is ignored. In this instance we have two independent bands, 
the equilibrium isotherms of each compound being given by a simple one-component 
Langmuir isotherm. The condition for touching bands is that the band profile of the 
lesser retained component ends when the second component front is eluted. The first 
component band ends at the time te,l, given by” 

t e,l = tp + fRO.1 WI 

where 1, is the width of the injection pulse, tRO,l and tRO,* are the limiting retention 
times of the two compounds at infinite dilution and to is the hold-up time of the 
column. The retention time of the front of the second component”, tR.2, is 

fR,2 = t, + t0 + ffRO.2 - to) (1 - &)* (4b) 

The condition for touching bands is obtained by writing te,l = tR.2. This gives the 
loading factor value for the second component: 

L/,, = Jy * ( > c1 
(5) 

When the competition is ignored and the bandprofiles are right triangles. We have 
shown that right triangles are the asymptotic solution of the ideal model in the case of 

” Langmuir isotherms . The exact solution of the ideal model for a parabolic isotherm 
is also a right triangle profile . I* This parabolic isotherm is the two-term Taylor 
expansion of the Langmuir isotherm. In this case, the retention time of the band front 
is given by18 

fR.2 = & + t0 + (fRO.2 - to) (1 - 26) (6) 
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Writing that this retention time for the second component is equal to the elution time 
of the end of the first component band gives the loading factor of the second 
component corresponding to touching bands in this assumption: 

L.f.2 = 

( > 

!z$ 2,4 (7) 

This equation is equivalent to that derived by Knox and Pyper6. 
B~~&ction rate and throughput. It is remarkable that both eqns. 5 and 7 are 

independent of the concentration of the first component in the mixture, whereas the 
exact eqn. 3 depends on the composition of the binary mixture. 

If we assume that the cycle time is equal to the corrected retention time of the 
second component, I, = tR0,2 - to, we obtain the following general equations for the 
production rate of the two components, Prl and Pr2, respectively: 

Pr2/(1 - E)S = qs,2uLf,21kb,2 (8) 

and 

PrllU - 4s = 9s,luLf,dkb,2 

where E is the packing porosity, S the geometrical column cross-sectional area and u the 
mobile phase linear velocity. The throughput is given by 

ml - 4s = &l,lLf,l + %2Lf,2)lkb,2 (10) 

In the case when a different definition is chosen for the cycle time, the results of eqns. 
S-10 should be multiplied by (t RO,2 - to)/&. The following discussions are based on the 
use of the production rate for the second component. Obviously, in the case of 
touching bands the production rate for the first component of a binary mixture is the 
product of the production rate for the second multiplied by the relative concentration 
of the two compounds. 

Consequence of the first assumption made by Knox and Pyper 
As we have shown in a previous discussion, a right triangle is the asymptotic 

solution of the ideal model”. It is a good approximation of the band profile obtained 
with this model for a Langmuir isotherm when the loading factor is less than 1%. We 
have also shown that the elution profile obtained for real columns (i.e., with a finite 
efficiency) can be approximated by right triangles for still larger values of the loading 
factor, in fact as long as bCMBx < 0.1 (ref. 18). 

We can expect that for low values of the relative retention, LX, the value of the 
loading factor corresponding to touching bands is small and this first approximation 
has no serious influence on the result. At higher values of a, in contrast, the 
consequence could be more significant. Figs. 1 and 2 illustrate this effect. On both 
ligures are plotted the individual elution profiles obtained with the loading factors 
given by eqn. 5 (no competition, correct Langmuir profiles) and by eqn. 7 (Knox and 
Pyper value, no competition, right triangles). Fig. 1 corresponds to a = 1.20 and Fig. 
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2 to c1 = 1.70. In the former instance the differences are small but in the latter they are 
fairly important. This shows that the assumption that the band profiles are right 
triangles is reasonably satisfactory if the relative retention is close to unity (difficult 
separations). If the relative retention is large, the assumption may contribute to some 
extent to the large difference between the production rates predicted by the Langmuir 
competitive and the parabolic non-competitive models. 

Consequence of the second assumption made by Knox and Pyper 
A much more profound and important source of error comes from the 

assumption of an independent behavior of the two bands during their migration. In 
non-linear chromatography, the competition between the different components of the 
mixture cannot be neglected 4*19*20 As long as the column is overloaded, i.e., behaves . 
non-linearly for one component, it behaves similarly for all the components whose 
bands interfere with the band of that compound. In agreement with the independence 
assumption, the loading factor for touching bands (eqns. 5 and 7) and the 
corresponding values of the production rates for the two compounds (eqns. 8 and 9) do 
not depend on the composition of the feed. This is not realistic, and eqn. 3 shows that, 
on the contrary, the loading factor does depend strongly on this composition when the 
competition is taken into account. 

Comparing eqns. 3 and 7 shows that the values of the loading factors they predict 
are equal only for Lf91/aLs,2 = b1C0,1/b2C0,2 = 3. When the ratio Lf,l/aLf,2 is 
smaller than 3 (dominant displacement effect), the loading factor corresponding to 
touching bands (eqn. 3) is larger than predicted by the Knox and Pyper model (eqn. 7), 
whereas the reverse is true for values of that ratio larger than 3 (dominant tag-along 
affect). If we inject the amount derived from eqn. 7, we obtain well resolved bands in 
the former instance and overlapping bands in the latter. 

Figs. 3-5 show two chromatograms each. They have been obtained for three 
different feed compositions, under the same simulated experimental conditions with 
the sample sizes predicted by eqns. 3 and 7, respectively. In all instances, the band 
profiles are obtained as the analytical solutions of the ideal model for binary Langmuir 
isotherms14. Fig. 3 is obtained with a relative feed composition such that Lf,l/aLf,2 is 
smaller than 3. As expected, the sample size predicted by eqn. 3 is the larger and the 
sample size predicted by eqn. 7 leads to well resolved bands (reSolution 1.2) whereas 
the nearly four times larger sample size which is predicted by eqn. 3 leads to touching 
bands. A strong displacement effect is observed. The rear profile of the first component 
is convex upward whereas the rear profile of the second band is convex downward, as is 
conventional with Langmuir isotherms, for single components. For Fig. 4, the feed 
composition is such that Lf,,/aLf,2 is equal to 3 and the two sample sizes are equal. 
Note, however, that the profile predicted by the ideal model is different from the right 
triangle assumed by Knox and Pyper6. For Fig. 5, the ratio Lf,l/aLf,2 is larger than 3. 
Now the sample amount predicted by eqn. 7 is too large. The chromatogram obtained 
corresponds to strongly overlapping bands. To obtain touching bands, the smaller 
sample given by eqn. 3 should be used. It is nearly half the one predicted by eqn. 7. The 
column is still strongly overloaded and a marked tag-along effect is observed. 

The previous discussion concerns only ideal chromatography. With real 
columns, the elution bands are wider and shorter than predicted by the ideal model. 
The concentration shock is damped by the finite rates of the axial diffusion and the 
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Fig. 5. Individual elution profiles of the bands of two components with Langmuir competitive adsorption 
isotherms. Conditions as in Fig. 3, except feed composition = 9: I. The production rate predicted by the 
non-competitive model is too high. 

mass-transfer kinetics, so a shock layer is observed instead. In order to achieve 
touching bands, the sample should be smaller than predicted by eqn. 3. The calculation 
of the sample corresponding to touching bands for an actual column is discussed in the 
next section. 

Touching bands in the case of a real column 

In this section we derive a close-form expression of the sample size corre- 
sponding to touching bands in the case of an actual column, with a finite efficiency. 
This value is a function of the column efficiency and, accordingly, of the column 
characteristics, length, packing particle size and packing quality, and of the flow 
velocity. In the following section we discuss the optimization of the experimental 
conditions. 

In a previous paper we showed that the maximum production rate is achieved 
when the column is operated at a high mobile phase flow velocity, so that the cycle time 
is short’. The column efficiency is then low and the relative band width is large. The 
effect of the band width on the degree of band interference is significant. Similarly, in 
the touching band case we must take into account the effect of column efficiency on the 
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band profile. A further difficulty is in the definition of the touching band condition. 
With the ideal model, the elution of a band begins and ends at well defined times. 
Before and after, the concentration of the compound in the mobile phase is zero. There 
is no such thing with real columns: the beginning and end of a band elution depend on 
the sensitivity of the detection. We shall neglect these effects, however, and write that 
the difference between the elution times of the rear of the second and first bands is 
equal to the total band width of the second component. 

Derivation of the band width of the second component 
The effect of the finite column efficiency on the band broadening during its 

elution can be accounted for by following the procedure first suggested by Haarhoff 
and Van der Linde’l and later used by Poppe and Kraak” and Knox and Pyper6. We 
assume that the two contributions to the elution band width with which we are 
concerned, the thermodynamics (i.e., the non-linear behavior of the phase equilibrium) 
and the kinetics (finite rates of mass transfer between phases and of axial dispersion) 
can be treated as two independent contributions. Therefore, their variances are 
additive and we have 

%ot ’ = Ofh + Ozin (11) 

where r~ z,, = w&,/16 is the variance of the elution profile, c& = w&/l6 the variance 
contribution due to the non-linear behavior of the isotherm and c&n = WEin/ the 
variance contribution of the mass-transfer kinetics and of the axial dispersion, where 
the ws are the corresponding baseline band widths. By definition of the column height 
equivalent to a theoretical plate, HtOt, we have 

H,,, = Hth + Hkin 

The kinetic contribution is given by 

(12) 

din = g*)l(tRO,2 - t0)2 (13) 

where NO is the column plate number under linear conditions (in practice, for a very 
small size sample), /4O,2 is the column capacity factor at infinite dilution (i.e., k&z = 
a2F, where F is the phase ratio) and t R0,2 and to are the limiting retention time at 
infinite dilution of the second component and the hold-up time, respectively. 

The thermodynamic contribution is calculated from the band width of the 
solution of the ideal model14. In this work we are interested in the width of the second 
component band. There are two cases. The ideal model solution shows that the band of 
the second component has completely recovered from its interaction with the first 
component band and achieved the same profile as if the same amount of second. 
component was injected alone when the loading factor is equal to or smaller than 

Lf.2.P 14, as given by 

u-l 

l- a 
L J92.p = 

a-l 

i 1 = 
~ + Ys,2CO,l 

qs.1co.2 

I a-l 

a 

LJl 1+2 
UL.f.2 
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When the loading factor is between the values given by eqns. 3 and 14, we still have 
resolved bands, but the band profile of the second component has not had time to 
recover from the deformation resulting from the interaction between the two 
component bands. Consequently, a different procedure must be used to calculate the 
band width of the second component, depending on whether the loading factor is 
smaller or larger than Lj,z,P. 

Loading factor of the second component for touching band when L/J < LJ,Q, 
In this case, the profile of the second component band is the same as if it is 

injected pure. Its width is given by the following equation’7V23: 

W th = (2&f,2 - Lf,2)(tRO,2 - to) 05) 

The total band width of the second component band in the touching band case is equal 
to the difference between the retention times of the rear of the first band and the rear of 
the second band: 

W tot = tR0.2 + t, - te.1 (16) 

In order to calculate the loading factor corresponding to touching bands, we must 
know the retention time of the rear of the first component band, te,l. It can be derived 
from eqn. 63 in ref. 14 by writing that C’, = 0 in this equation. We obtain 

t e.1 R0.2 - to) (17) 

This equation demonstrates the consequence of band interactions in the column. 
Although we are looking for conditions under which the two bands are just resolved 
when they elute, they have interacted during their entire migration. If there were to be 
no interaction, the retention time of the end of the first band would be t, = t, + tRO, 1. 
Eqn. 17 shows that the band is actually eluted earlier. The decrease in the retention 
time is directly proportional to the loading factor for the second component. 

Combining eqns. 16 and 17 gives 

a-l 
W tot = (fR0,2 - to) 

Lf2 -+A 

a a-l > 
(18) 

Eqn. 18 shows that the second component band width corresponding to touching 
bands and, accordingly, the apparent column efficiency, are a function of the sample 
size. This is the major difference from the simplified approach by Knox and Pyper6, 
which assumed that the values of wtO, and &, corresponding to touching band are 
constant, independent of the amount of second component injected. 

Combination of eqns. 11, 13, 15 and 18 gives 

wk2 - L/,2)2 + gO 
'"(5#2~(!!!!+_h) (19) 
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Solvingeqn. 19 for LJ,* and putting the solution into eqn. 8 gives the production rate of 
the second component. 

Simplified equations 
Several simplifications are possible. We can assume that the loading factor is 

relatively small and neglect Lf,z in comparison with ,/Lf,2 in eqn. 19. This amounts to 
assuming that the band profile of the second component is a right triangle, as did Knox 
and Pyper6, but still conserves the competitive interaction between the two com- 
ponents which is introduced by the competitive Langmuir isotherms. In this case, it is 
easy to solve the modified eqn. 19 and to obtain 

, 

(20) 

Inserting the value of Lf,z into eqn. 8 gives the production rate: 

Pr2 qs,24a - *j2 -= 
(1 - m kb,, 

(2+/4(g+g-[~;pJ] (21) 

If, in addition, we assume that the competitive interaction between the. two 
components of the mixture is negligible, we ignore the term Lr,J(cr - 1) on the 
right-hand side of eqn. 19 and Lf.2 compared with its square root on the left-hand side. 
We then obtain 

Combination of eqns. 8 and 22 gives the production rate: 

Pr2 qs,zu ---_=- 
(1 - &)S 4ko,2 

(22) 

(23) 

This equation is the same as that given by Knox and Pyper6 (combination of their eqns. 
40, 47, 63, 67) in the case when the cycle time is equal to tROJ - to. 

Loading factor of the second component for touching band when L,,, > L~,Q 
Eqn. 19 is valid only as long as the loading factor obtained is lower than the 

threshold value (or equal to it), Lf,2,p derived from eqn. 14. In contrast, when L,,2 is 
larger than Lf,2,P, a plateau remains on the top of the second elution band, at least 
within the ideal model approximation. This plateau is more or less eroded by the axial 
diffusion and the finite rate of the mass-transfer processes. In this instance, neither the 
first nor the second component band profiles are identical with the band profile 
obtained with a pure component sample. The first band is modified by the 



OPTIMIZATION OF PREPARATIVE LC 241 

displacement effect and the second has not yet recovered from the tag-along effect. 
Because the concentration of the second component is constant during elution of 

the plateau, we can assume, as a first approximation, that the finite column efficiency 
does not affect the contribution of the length of this plateau to the band width’. Hence, 
the total band width in this instance should be calculated as 

W tot = Wplatesu + JWEin + CWth - WplateauY (24) 

where wplateau is the width of the plateau (see below). As we have shown elsewhere*, we 
have 

Wth - Wplatcau = (&&Z,p - J5/,241)(~R0,2 - tO) (25) 

where Lf,2,P is given by eqn. 14 and wtOt for touching bands is given by eqn. 18. 
The width of the plateau can be calculated by writing that the area of the second 

component band is equal to the area injected in the column, i.e., that mgss is conserved. 
Thus, 

fR0.2 +t, 

C! Wplatcau + 
s 

C,dt = 4.20RO.2 - to)b2 (26) 

where C& ts, and C2 are given by eqns. 28,48 and 47, respectively, in ref. 14. The first 
term on the left-hand side of eqn. 26 is the area under the plateau, the second term, the 
area under the continuous profile, the right-hand side of eqn. 26 is the area Co,2t, of the 
rectangular pulse of second component injected (see eqn. 42, ref. 14). The calculation 
gives 

Wplateau = 

ablrl 
l+- 

bz 
a-l I[ L f.2 - 

a-l 

a 

l+blrl 
b2 

2 

il (tRO.2 - 20) (27) 

Combination of eqns. 13, 18, 24, 25 and 27 gives 

a-1' 

(-) [ a 
Lf*2 = X(1 +x)2 P+3x+G 

(28) 
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with 

X= 
qs,2co,1 =LLL 

@4s,lCO,2 ah2 
(284 

Eqn. 28 gives the loading factor for touching bands for values of the loading factor 
between those given by eqns. 3 and 14. The production rate is then calculated using 
eqn. 8. 

Optimization of the experimental conditions 

The optimization requires the use of a plate-height equation to relate the column 
efficiency to the mobile phase flow velocity. There are two possibilities at this stage. We 
can use a very simplified equation which assumes that the column is operated at a high 
reduced flow velocity. We have shown previously that the optimum flow velocity for 
maximum production is very highs. In this instance, we can also solve the optimization 
problem in close form and give a detailed, classical analysis of the effect of each 
parameter. Alternatively, we can use the classical Knox equation24 and solve the 
problem numerically. These two approaches are discussed below. 

Optimization with a simple plate-height equation 
We know that the linear mobile phase velocity, u, is related to the column design 

and operating parameters by the following equation: 

(29) 

where k. is the column specific permeability (of the order of 1 . 10e3), AP is the 
pressure drop between the column inlet and outlet, dp is the average particle size of the 
packing material used, q is the mobile phase viscosity and L is the column length. 

As the column is operated at a high reduced mobile phase velocity, we assume 
that the height equivalent to a theoretical plate height (HETP) of the column, is given 
by the simplified equation’? 

h = Cv (30) 

where h is the reduced plate height (h = H/d,) and v is the reduced velocity (v = 
udp/D,). The limiting column efficiency at infinite sample dilution (i.e., L/Hkin) is 
therefore 

1Dm 
No = koAPC(&/L)2 

(31) 

As u and No depend on the ratio e/L, not separately on the column length and the 
particle size, so. does the production rate. As long as eqn. 30 is valid, in both the 
touching band and the overlapping band cases 8, long columns packed with coarse 
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particles may give the same production rate as short columns packed with fine 
particles, if they have the same value of the ratio e/L. Provided that the column length 
can be adjusted easily, a variety of packing materials of different sizes can be used 
(within reason). The existence of an optimum particle size at constant length has been 
demonstrated experimentally in a recent paper5, in agreement with the results of 
a previous studyrg. 

Depending on the value of the optimum sample size, we have two different cases. 
When the optimum loading factor is less than Lj.z,P, we should calculate it using eqn. 
19. When the optimum loading factor is greater than Lj,z,P, eqn. 19 is no longer valid, 
and we must use eqn. 28. This condition is awkward to use. We show later that in 
practice eqn. 19 must be used to calculate the optimum loading factor for touching 
band when L, 1 /aLJ,z is lower than 0.4 (and the displacement effect is dominant) 
whereas eqn. 28 must be used when Ls,l/aLJ,z is larger than 0.4 (and the tag-along 
effect predominates). We discuss successively the cases when Ls,l/aLJ,z is smaller and 
larger than 0.4. 

Optimization with a simple plate-height equation: displacement effect dominant 
Combining eqns. 8, 19,29 and 3 1 gives the production rate. Differentiation with 

respect to e/L permits the calculation of the optimum column configuration for 
a certain value of the pressure drop available. The equations could not be solved in 
close form, but the numerical calculation is easy. 

If we assume that the band profiles are right triangles, as we have shown above 
that this assumption is reasonable when the relative retention a is close to 1 and the 
loading factor is small, we perform the same calculation as above, but using eqns. 20 
and 2 1 instead of eqn. 19. Then it is easy to solve the equation giving the optimum value 
of the ratio e/L. We obtain 

Combination of eqns. 20,3 1 and 32 gives the optimum value of the loading factor for 
touching bands: 

L /.2,opc = 3 

[ 1 (o(-- (a - l/2 - ,/a” - a + l/36) 
2a (33) 

The value of the production rate is obtained by combining eqns. 21, 29, 32 and 33: 

J(a - 1/2)Ja2 - a + l/36 - (a2 - a - i/12) (34) 

Finally, if we ignore the competitive interactions between the two components of the 
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mixture and assume right triangle band profiles, we can use the value of the loading 
factor given by eqn. 22. A calculation similar to those made using eqn. 19 or 20 and 
described above gives in this case the following optimum value of the ratio d$L: 

and the optimum value of the loading factor is 

L 
1 a-l ’ -0 - f*2,oPt - 6 
( > 

a 

Inserting eqn. 35 into eqn. 31 gives the optimum column efficiency: 

and the maximum production rate is 

Pr2 

(1= 24(1 q:2ko,2) 

(35) 

(36) 

(37) 

(38) 

which are equivalent to the equations derived by Knox and Pyper6. 

Optimization with a simple plate-height equation: tag-along effect dominant 
The optimum loading factor is now higher than the threshold (Ls,2,& given by 

eqn. 14 and, as we show later, the ratio LJ,l/(aLI,2) is larger than 0.4. The value of the 
optimum loading factor for touching bands is given by eqn. 28. Eqns. 29,30 and 31 still 
give the mobile phase flow velocity, the column plate height and the plate number of 
the column at infinite sample dilution, respectively. Combining eqns. 8,28,29 and 31 
gives the production rate. Writing that the differential of the production rate with 
respect to dg/L is zero gives the optimum value of this ratio: 

//m (39) 
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where X is given by eqn. 28a. When A’ becomes large, the square-root term on the 
right-hand side of eqn. 39 is almost equal to unity and the equation simplifies 
considerably: 

a-l 

This result is now independent of the feed composition. 
Inserting the optimum value of G/L given by eqn. 39 into eqn. 31 gives the 

optimum limiting column efficiency (at negligible sample size). Combination of these 
equations with eqn. 28 gives the optimum sample size: 

L JAopt = 

In the case when X is large, the optimum column efficiency and loading factor are 

Nom = a(i)2 (y) (@a) 

This value is equal to that predicted by the non-competitive model for X = 3, lower 
when X is larger than 3 and larger when X is smaller than 3. 

Finally, combination of eqns. 8, 29, 39 and 40 gives the maximum production 
rate which can be achieved with a certain value of the inlet pressure. 

Optimization with the Knox plate-height equation 
More accurate results could be obtained using the classical Knox plate-height 

equationz4: 

L 
h=-----= !+A 

G’o v 
1’3 + cv 

It is easy to calculate numerically the optimum values of the column length and particle 
size, flow velocity and sample size for any problem, but a close-form solution cannot be 
derived. 
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RESULTS AND DISCUSSION 

We have performed a number of calculations in the two cases when either the 
displacement or the tag-along effect predominates, using the simplified and the more 
accurate plate-height equations, and we report the results in Tables I-IV, discussed in 
the following sections. We then compare these results with previously published data. 

Optimization with a simple plate-height equation: displacement effect dominant 

In this instance, the optimum sample size is given by eqn. 19. We see that, as 
assumed by Knox and Pyper6, the optimum values of the sample size and of the 
limiting column effkiency do not depend on the composition of the feed. 

Table I compares the results derived from our present approach (eqns. 8, 19,29 
and 31) and those calculated using the model derived by Knox and Pyper6 (eqns. 
35-38). The optimum values of the limiting column efficiency, of the value of the ratio 
e/L, of the mobile phase flow velocity and of the loading factor are given together 
with the maximum production rate that can be achieved. A maximum value of the inlet 
pressure of 200 atm has been assumed. The comparison between the two sets of results 
shows little difference between the optimum values of the ratio di/L, usually lO-20% 
larger with the Knox and Pyper assumptions than with our more exact approach. The 
difference in the values of the optimum limiting column efficiency is greater; our 
approach requires a column efficiency roughly 35% larger than that of Knox and 
Pyper6. Correspondingly, the optimum value of the mobile phase velocity is lower with 

TABLE I 

OPTIMUM VALUE OF THE RATIO c$/L AND MAXIMUM PRODUCTION RATE UNDER 
TOUCHING BAND CONDITIONS 

%&O.I 
First case: ~ 

Lf. 1 
= - < 0.4. h = cv. 

aq‘JCo.2 aLf.2 

a NO ($lL 
x 108 (cm) I;c??,s, 

Lr.2 Pr,l(l - 8)s Pr241Pr2b 

f%) Iwo0 (cm’ s) 1 

1.1” 10500 2.2 0.44 0.41 2.72 
I.lb 7700 2.55 0.51 0.138 I .06 2.57 
1.2” 3100 4.0 0.8 1.37 15.2 
1.2b 2260 4.7 0.94 0.46 6.1 2.51 
1.3” 1600 5.55 1.1 2.62 37.4 
1.3b 1150 6.6 1.3 0.89 15.0 2.30 
1.5” 760 8.1 1.6 5.41 97.6 
I.9 550 9.55 1.9 1.88 39.8 2.45 
1.7” 530 9.75 1.95 8.45 161.6 
1.7b 350 12.0 2.4 2.83 66.8 2.42 

a Calculated with the simple HETP equation h = Cv, using the model described in this work. 
Conditions: C = 0.1; /$, = 6,dP = 200atm,D, = 1 10-5cmz/s,~ = lcP,q,,, = lO.Thecycletimeis 
given by r, = tso,2 - to. 

b Calculated with the same plate-height equation, using the model of Knox and Pyper6, which 
ignores the competition and assumes right triangular band profiles. 
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our results, by cu. 15-20%. However, the major difference between the two sets of 
results is the loading factor. Knox and Pyper neglect. the band interaction. Because of 
the importance of the displacement effect, a nearly three times larger sample size is 
needed to achieve touching bands when we take into account the competitive 
interaction between the two components of the mixture (Table I). The end result is 
a production rate which is cu. 2.5 times larger than that predicted by the non- 
competitive mode16. 

If we ignore the competition between the mixture components, the optimum 
values of e/L, No and Ls,z,op, and the maximum production rate are proportional to 
(a - 1)/a, [(a -‘1)/a]-‘, [(a - 1)/a]‘, and [(a - l)/a13, respectively (see eqns. 35,36, 
37 and 38). When we take the competitive interaction between the two components 
into account, the exact dependence of these parameters on the relative retention is 
more complicated. The analysis of the data in Table I shows, however, that in practice 
the optimum sample size is given by 

L,., = 0.5 
( > 

+ 2 (42) 

instead of Lf,2 = 0.166 [(a - l)/a12, as predicted by the approximate eqn. 376. This 
important increase is not surprising. The first component band is pushed forward by 
the second band. Eqn. 17 shows the reduction in the retention time of the rear of that 
band, proportional to the amount of second component injected. Accordingly, in 
order to reach touching band conditions, we need a wider second component band, 
hence a larger sample size. 

Further, we see that the limiting efficiency required, No, is equal to four times the 
efficiency, N*, necessary for the separation of the mixture with a resolution of 1 under 
linear (i.e., analytical) conditions, instead of three times as predicted by the 
non-competitive model of Knox and Pyper6. In other words, the column should afford 
the separation of a very small sample with a resolution of 2.0, not 1.7. 

As the optimum sample size for touching bands under a dominant displacement 
effect is given by eqn. 42, the threshold condition, L,, -C Lf,Z,p where Lj,2,p is given by 
eqn. 14, can be rewritten as 

or, by combining eqns. 14 and 42: 

which gives 

L_f 1 A<$-1 
ah.2 

(43c) 
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which is the condition mentioned above (Lr,l/aL/,z < 0.4). When condition 43c is not 
satisfied, eqn. 28 or 40 should be used instead of eqn. 19 for the optimization. 

Optimization with a simple plate-height equation: tag-along effect dominant 

In this case, the optimum sample size is not given by eqn. 19 but by eqn. 40. The 
tag-along effect dominates, so the second component band is spread over a wide range 
of retention times. In the ideal model approximation it exhibits a plateau whose width 
depends on the loading factor (see eqn. 27). The second component individual elution 
profile is different from the profile observed for the same amount of pure second 
component. Especially noteworthy is the fact that, in contrast to what happens in the 
previous instance, the optimum conditions depend on the feed composition. 

Calculations were performed using our approach (eqns. 8,29,3 1,39 and 40) and 
that of Knox and Pyper6 for binary mixtures of different compositions and the same 
relative retention, CI = 1.20. The results are reported in Table II. As in the previous 
instance, the differences between the optimum values of the limiting column efficiency, 
the ratio G/L and the mobile phase flow velocity are relatively small. Compared with 
the optimum values predicted by Knox and Pyper, the optimum values of the column 

TABLE II 

OPTIMUM VALUE OF e/L AND MAXIMUM PRODUCTION RATE UNDER TOUCHING BAND 
CONDITIONS 

Second case: 
qs,zCo 1 LJ.1 

L = - > 0.4”. h = cv. 
%, 1 co.2 e.2 

Feed composition NO d$ 
x IO8 (cm) I;cm/s) 

Lf.2 
(%I 

Pr2/(1 - E)S PrZalPrzb 

Ipmoli(cm2 s)l 

1:l” 
3:l” 
9:l” 
For comparison: 

Conditions in ref. 6b 
This work, 
with Lf,,/aLf,2 < 0.4” 

2100 4.9 0.98 0.98 13.2 2.17 
2000 5.0 1.0 0.49 6.8 1.12 
2470 4.5 0.9 0.189 2.36 0.39 

2260 4.7 0.94 0.46 6.08 n.a. 
3100 ’ 4.0 0.8 1.37 15.2 2.50 

Knox and Pyper column 
with: 

L/,lIaL,,z < 0.4’ 
1:l’ 
3:l’ 
9:l’ 

2260 4.1 0.94 

1.14 
I .o 
0.51 
0.18 

14.8 
13.2 
6.76 
2.36 

Pr,“/Przc 

1.03 
1.0 
1 .oo 
1 .oo 

’ Values calculated with the Langmuir competitive adsorption model, using the simplitied simple 
HETP equation h = Cv. Same conditions as for Table I, except G( = 1.20. 

* Values calculated using the non-competitive model and the simplified HETP equation and 
assuming right triangular band profiles. The same results are obtained, regardless of the mixture 
composition. 

c Values calculated for a column designed with the approach suggested by Knox and Pyper6 
(d$L = 4.7) and using the same velocity (u = 0.94) but the much larger sample size predicted by the 
competitive model. 
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efftciency range between - 10 and +40%, those of the ratio di/L between - 15 and 
+ 7% and those of the mobile phase velocity between - 15 and + 7%. On the other 
hand, the loading factor required to achieve touching bands decreases rapidly with 
decreasing concentration of the second component. The sample sizes and production 
rates predicted by the two methods are nearly equal for a 3:l mixture. For mixtures 
richer in the second component, the sample size and the production rate are higher 
than those predicted by the Knox and Pyper model, because of the displacement effect, 
whereas for mixtures richer in the first component, the production rate is lower, 
because of the tag-along effect. 

The optimization of the column efficiency, of its conformation and of the mobile 
phase velocity are not very critical and nearly identical results are obtained with the 
columns which have either the optimum characteristics calculated in this work or those 
calculated after Knox and Pyper, provided that they are both operated with the 
optimum sample size as calculated in this work. This is illustrated by the comparison 
between the data at the top and bottom of Table II. 

Optimization with the Knox plate-height equation 

Numerical calculations were carried out using the Knox plate-height equation 
with conventional values of the coefficients, A = 1, B = 2 and C = 0.1, which 
corresponds to an average quality packing material packed properly into a chromato- 
graphic column (minimum reduced plate height 2.40; optimum analytical reduced 
velocity 2.7). The optimization procedure is as follows. Values of the column length 
and particle size are selected and the mobile phase velocity is calculated (eqn. 29). The 

TABLE III 

OPTIMUM VALUE OF COLUMN LENGTH AND MAXIMUM PRODUCTION RATE UNDER 
TOUCHING BAND CONDITIONS 

First case: 
4r.zCo.t LS.1 
___ = - < 0.4. 
%*1Co.2 ak.2 

h = 2/v + v”.= + O.lv. 

a No 

1.1” 8880 
I.lh 6850 
1.2 2750 
I .2h 2050 
1.3 1480 
I .3b 1070 
1.5” 700 
I.5b 500 
1.7” 450 
I .7b 320 

L 

(cm) 

59. 
50.5 
29.6 
25.2 
20.9 
17.4 
13.8 
11.5 
10.9 
9.0 

V 

34 
39.5 
67.5 
79.0 
96 

115 
145 
174 
183 
222 

Lr.2 Pr,/(I - E)S Pr2”/Pr2’ 
(%I [~moll ( cm2 s ! 1 

0.375 1.93 
0.129 0.775 2.49 
1.28 12.0 
0.443 4.88 2.46 
2.51 30.8 
0.85 12.6 2.44 

51.8 83.5 
1.79 34.6 2.41 
7.84 141.1 
2.72 59.4 2.38 

’ Values calculated using the Langmuir competitive adsorption model and the general Knox HETP 
equation. Same parameters as for Table I except particle size dp = 10 pm. The cycle time is r, = zR0,2 - to. 

b Values calculated using the non-competitive model, assuming that the band profiles are right 
triangles and using the general Knox HETP equation. 
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TABLE IV 

OPTIMUM VALUE OF THE COLUMN LENGTH AND MAXIMUM PRODUCTION RATE 
UNDER TOUCHING BAND CONDITIONS 

%,& 1 
Second case: L 

LI.1 = - > 0.4. 
‘%1C0,* aLI. 

h = 2/v + VOJJ + Olv. 

Feed composition N,, 

1:l” 1920 
3:l” 1810 
9:l” 2180 
For comparison: 

Lf,,/ciL& c 0.4 2750 
(this work) 
Knoxb 2060 

L 

(cm) 

24.2 
23.4 
26.0 

29.6 

25.2 

V 

82.5 
77.0 
85.5 

67.5 

79.0 

Lr,2 Pr,/(l - E)S 

WI IvoV(cm2 s)I 

0.94 10.7 
0.46 5.5 
0.18 1.9 

1.28 12.0 

0.44 4.9 

a Values calculated with the Langmuir competitive adsorption model, using the general Knox 
HETPequation (h = 2/v + v”.33 + 0.1 v). Same conditions as for Table 11, except particle size dv = 10 pm. 

b Values calculated with the non-competitive model, assuming right triangle band profiles and using 
the general Knox HETP equation. The values are constant, regardless of the feed composition. 

reduced plate height is then derived (eqn. 41) and the plate number introduced in eqn. 
19 or in eqn. 28, depending on whether L,-,llaLf,z is smaller or larger than 0.4. This 
gives the sample size. Inserting the sample size and the velocity in eqn. 8 gives the 
production rate. The calculation is repeated for successive values of the column length 
at constant particle size to determine the optimum column length giving the maximum 
production rate. Alternately, the particle size could be varied at constant column 
length or the calculation could be made for the columns currently available in the 
laboratory to find which will give the highest production rate. Although this procedure 
of optimization is generally not correct, it gives a result which is satisfactory in 
practice, because particles are available in only a small number of sizes and the 
variation of the production rate near its optimum is fairly flat. The same procedure is 
followed for the calculation of the optimum conditions within the frame of the Knox 
and Pyper model, but eqn. 22 is used to calculate the sample size. 

Tables III and IV summarize the data obtained. Optimum values of the limiting 
column efficiency, the column length, the reduced flow velocity and the loading factors 
are given in Table III for different values of the relative retention between 1.10 and 1.70 
for binary mixtures having a composition such that Lf,J(aL,-,J is smaller than 0.40. 
We have assumed the particle size to be 10 pm. Also given in Table III is the maximum 
production rate. Comparison between the exact values and those derived from the 
Knox and Pyper model again shows fairly small differences between the optimum 
values of the limiting column efficiency (30-40%), the column length (l&20%) and 
the reduced velocity (15-20%). The loading factor, on the other hand, is 2.5-3 times 
larger than that predicted by the Knox and Pyper model and the production rate is 
about 2.20 times higher. As expected, comparison between the results in Tables I and 
III shows general agreement for the optimum limiting column efficiency and loading 
factor and for the maximum production rate at high values of a when the mobile phase 
velocity is very high. The difference increases, however, with decreasing values of a and 
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TABLE V 

OPTIMUM VALUE OF s/L AND MAXIMUM VALUE OF THE PRODUCTION RATE UNDER 
OVERLAPPING BAND CONDITIONS” FOR DIFFERENT FEED COMPOSITIONS 

Feed composition No <IL 
x 10’ (cm) 

u L/,Zb Pr2/(1 - E)S 

(4s) l%) Iwnoll(cm2 s)l 

1:9 380 11.5 2.3 4.8 91.6 
I:3 490 10.1 2.0 3.05 52.0 
I:1 630 8.9 1.8 I.822 26.6 
3:l 910 7.4 1.5 0.875 10.2 
9:l 1200 6.5 1.3 0.343 3.1 
Knox’ 2260 4.7 0.94 0.46 6.1 

’ Values calculated with the competitive model and the simple HETP equation h = Cv, with C = 
0.1. Same conditions as for Table II except required product purity, 99%. a = 1.2; qJ,* = q.,i = 10. In all 
instances the recovery yield is about 60%. 

* Values calculated from the equation L,.z = &(zy. where x = (!f$y”, 
_ _. _, , 

PM* being the required purity of the product. This equation is derived in ref. 7. 
. - =, 

’ Values calculated with the non-competitive model, assuming right triangle band profiles and 
a simple HETP equatio@. The results are the same, regardless of the feed composition. 

for a = 1.10, the production rate predicted is 40% less with the correct plate-height 
equation (eqn. 41) than with the simplified eqn. 30. A significant difference between the 
results obtained with the two plate height equations is expected in this case: a is low, 
a relatively high efficiency is needed, leading to a moderate reduced velocity (Table 
III). Obviously, the difference between eqns. 30 and 41 is larger at low flow velocities. 

Table IV reports similar data calculated for binary mixtures of different 
compositions, such that L,,,/(LxL~,~) is larger than 0.4, for different compositions and 
a = 1.20. As with the simplified plate-height equation, the production rate predicted 
by the Knox and Pyper model is lower than that given by the more exact approach 
when the relative concentration of the second component exceeds about 0.25 and is too 
large when the relative concentration of the second component is smaller than 0.25. 
The production rates are about 20% lower than those calculated with the simplified 
plate-height equation and reported in Table II, because of the influence of the two 
neglected terms of the plate-height equation. 

Comparison with previous results 

Depending on the required degree of purity of the prepared products and the 
desired recovery yield, there are two extreme strategies and a variety of possible 
compromises between them”. The first strategy is to achieve a total recovery yield (ca. 
100%). In this instance the touching band approach as discussed in this paper must be 
used. The second strategy consists into looking for the maximum possible production 
rate without concern for the value of the recovery yield. We have previously discussed 
this strategy which can give recovery yields as low as 60%8.‘2. For example, data have 
been calculated and are reported in Table V illustrating the advantages and 
inconveniences of this strategy. A purity of 99% of the product was required and no 
condition was placed on the recovery yield. 
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TABLE VI 

OPTIMUM VALUE OF &/L AND MAXIMUM PRODUCTION RATE UNDER OVERLAPPING 
BAND CONDITIONS” FBR DIFFERENT VALUES OF CI 

a No @ 
x IO8 (cm) ;cm/s) 

Lf.2 Pr,/(l - 6)s 
(%)b Lwdl(cm2 s)l 

I.1 1150 6.6 1.3 1.41 17.9 
1.2 380 11.5 2.3 4.80 91.6 
1.3 240 14.4 2.9 9.0 205.2 
1.5 145 18.5 3.7 18.0 461.2 
1.7 I05 21.8 4.4 26.6 619.2 

a Values calculated with the competitive model, using the simple HETP equation h = Cv, with C = 
0. I. Same conditions as for Table I, except required product purity, 99%, relative feed composition, l:9, 
qs.2 = qs,, = 10. In all instances the recovery yield is about 60%. 

b Values calculated from the equation L,, = &(!ff~,wherex=(~~. 

Comparison between the results in Tables II and V shows that when the relative 
concentration of the first component is small, the production rate is much greater when 
the overlapping-band approach is used, the column is overloaded and the individual 
elution bands exhibit a degree of overlap than when the touching band strategy is used. 
As shown in Table V, for a 1:9 mixture the production rate is six times larger with 
overlapping bands than with touching bands (and fifteen times larger than that 
predicted by the model of Knox and Pyper6). The ratio of the production rate with 
overlapping bands to the production rate with touching bands decreases with 
decreasing relative concentration of the second component. It is still three times for 
a 1:3 mixture, two times for a 1: 1 mixture, 1.5 times for a 3: 1 mixture and only 1.3 times 
for a 9: 1 mixture. In all instances the yield is ca. 60%. 

The comparative advantage of using the first or the second strategy depends very 
much on the composition of the feed. If the second compound is in large excess, the 

TABLE VII 

OPTIMUM VALUE OF THE COLUMN LENGTH AND MAXIMUM PRODUCTION RATE 
UNDER OVERLAPPING BAND CONDITIONS” FOR DIFFERENT VALUES OF a 

a No 

I.1 1000 
1.2 360 
1.3 220 
1.5 130 
1.7 95 

L 

(cm) 

16 
9.6 
7.3 
5.6 
4.7 

V 

120 
210 
275 
357 
425 

b.2 Pr2/(l - E)S 
(%)b Iw4(cm2 s)l 

1.47 15.0 
4.80 81 
9.0 186 

18.0 425 
26.6 630 

4 Values calculated with the competitive model, using the Knox general HETP equation, h = 2/v + 
v”.33 + 0. Iv, and the same conditions as for Table VI, except the particle size, dp = IO pm. In all instances 
the recovery yield is about 60%. 

* Values calculated from the equation Lf.2 = &(zr, wherex = (!f-!$y. 
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overlapping band approach permits, compared with the touching band approach, 
a much higher production rate, for which the penalty is a decrease in yield. This 
advantage, however, decreases rapidly with increasing relative concentration of the 
first compound. Then it is reasonable to adopt an intermediate approach, where the 
degree of band overlapping accepted decreases with decreasing concentration of the 
second component, with a parallel increase in the recovery yield. 

Finally, Tables VI and VII give the optimal experimental conditions in the case 
of overlapping band’ for a series of l/9 mixtures with different values of the selectivity, 
a, using either the simple plate height equation (eqn. 30) or the more general Knox 
plate height equation (eqn. 41), respectively. Comparison of these two sets of data with 
the data in Tables I and III show that when the ratio of the component concentrations 
in the feed, C0,1/C0,2r is small, the overlapping-band strategy has the following 
advantages over the touching-band strategy: a lower optimum column efficiency, 
a larger optimum ratio di/L, a larger optimum reduced velocity, and a higher 
production rate of the second component. The production rate increases rapidly with 

increasing value of the selectivity, nearly in proportion to 

touching-band case (Table III) and the overlapping-band case (;able VI). 

CONCLUSION 

As our previous discussion of the overlapping band strategy has shown, the 
maximum production rate with the touching band strategy increases indefinitely with 
increasing permissible column pressure drop, provided that the column of optimum 
geometry is used. For a given column, in contrast, there is an optimum pressure drop as 
there is an optimum flow velocity. The maximum production rate is usually achieved at 
very high values of the reduced flow velocity, much in excess of that which corresponds 
to the maximum column efficiency v2 We note, however, that the optimum velocity is . 
lower for touching bands than for overlapping bands. 

For values of the ratio L,,il(~tL~,~) less than 0.4, the optimum sample size is 
independent of the feed composition and the sample size should be such that Lf,2 = 
0.5[(a - l)/a12, i.e., approximately three times larger than that predicted by the simple 
model of Knox and Pyper6, which neglects the interaction between the two 
components of the mixture during the separation. In this instance, the analytical 
resolution under the conditions selected for the separation should be 2, larger than the 
value of 1.7 suggested by Knox and Pyper. For values of the ratio LJ, ,/(c~L,,~) between 
0.4 and 3, the sample size depends markedly on the feed composition but is still larger 
than the value predicted by the Knox and Pyper model. Finally, for values of 
Lf,1/(aLf,2) larger than 3, the sample size should be less than that predicted by Knox 
and Pyper. It depends strongly on the composition of the mixture and decreases 
rapidly with increasing concentration of the first component. In preparative chroma- 
tography a system eluting the main component first and the impurities later should be 
avoided as much as possible. 

The use of the overlapping strategy entails a recovery yield of the order of 60% 
but permits a considerable increase in production rate for both components when the 
displacement effect predominates, a result which has already been observed experi- 
mentally and is well documented4*‘gs20. The gain in production rate decreases rapidly 
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with decreasing concentration of the second component in a binary mixture. The 
overlapping band strategy has no special advantage for the production rate of the 
second component when this compound is the minor one. 

The quantitative accuracy of the present results depends on the extent to which 
the equilibrium isotherms of the components of the mixture are approximated by the 
competitive Langmuir model. On the other hand, the accuracy of our results is 
considerably better than those given by models, computerized or not, which do not 
take the competitive interactions of the mixture components into account properlyg. 
As shown above, the production rate predicted by these models can be three times too 
low or too high, depending on the composition of the feed. 

SYMBOLS 

A 

4 
B 

bi 
C 

Ci 
c Max 

cO,i 
c2 

f&t 

h 
ko 
kb,i 

L 

LfJ 
Lr*2.P 

No 

opt 
AP 
Pri 
4i 
4s.i 
rl 

Coefficient in the Knox plate-height equation 
Numerical coefficient in the competitive Langmuir isotherm 
Coefficient in the Knox plate-height equation 
Numerical coefficient in the competitive Langmuir isotherm 
Coefficient of mass-transfer resistance in the plate-height equation 
Mobile phase concentration of component i 
Maximum concentration of a compound in the eluent 
Concentration of component i in the feed 
Concentration of the second component during its elution. In eqn. 26, 
concentration of the second component in the last zone, where it is pure 
Concentration of the elution plateau of the second component 
Molecular diffusion coefficient of the mixture components 
Average particle size of the packing material used 
HETP of the elution profile of a Dirac pulse under linear conditions 
HETP of the elution profile of a Dirac pulse predicted by the ideal model 
under non-linear conditions 
HETP of the elution profile of a Dirac pulse under non-linear conditions 
Reduced plate height (h = H/d,) 
Column specific permeability (of the order of 1 . 10m3) 
Column retention factor or capacity factor of component i under linear 
conditions; K0.i = (rR0.i - to)/to 
Column length 
Loading factor for component i 
Loading factor for the second component corresponding to the elution of 
a band profile for which the tag-along effect has just disappeared 
Column plate number under linear conditions (in practice, for a very small 
size sample) 
The subscript opt represents the optimum value of a parameter 
Pressure drop between the column inlet and outlet 
Production rate of component i 
Amount of compound i adsorbed at equilibrium with the mobile phase 
Specific column saturation capacity for component i; qs,i = ai/bi 
Positive root of the characteristic equation of the problem (ref. 8, eqn. 
11-3). In practice, r1 x Co.,/Co,, 
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S 
T 
tB 
tc 
t e,l 

to 
t P 

tR,i 

t RO,i 

u 

Wkin 

Geometrical column cross-sectional area 
Total feed throughput 
Elution time of the end of the plateau of the second component 
Cycle time 
Elution time of the rear of the first component band 
Hold-up time of the column 
Width of the injection pulse 
Retention time of the front of component i 
Limiting retention time of component i at infinite dilution 
Mobile phase linear velocity 
Baseline band width of the elution profile of a Dirac pulse under linear 
conditions 

WplWlll 

Wh 

Wtot 

Width of the elution plateau of the second component; wplateau = tR,Z - 

tB 

Baseline band width of the elution profile of a Dirac pulse predicted by the 
ideal model under non-linear conditions 
Total baseline band width of the elution profile of a Dirac pulse under 
non-linear conditions 

x 

a 

E 

? 

V 

din 

2 
0th 

Dummy parameter in eqns. 28 and 39-40 
Relative retention of the two compounds (a = a2/aI) 
Packing porosity 
Mobile phase viscosity 
Reduced velocity (v = udJD,,,n) 
Variance contribution of the mass-transfer kinetics and the axial dis- 
persion 
Variance contribution due to the non-linear behavior of the isotherm 
(thermodynamics) 

2 
ctot Variance of the elution profile 
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